# ПАРАМЕТРЫ СЕЙСМИЧНОСТИ КАМЧАТКИ В 2005-2006 гг.

Салтыков В. А. <sup>1,2</sup>, Кравченко Н. М. <sup>1</sup>

<sup>1</sup> Камчатский филиал Геофизической службы РАН, Петропавловск-Камчатский, salt@emsd.ru <sup>2</sup> Камчатский государственный университет имени Витуса Беринга, Петропавловск-Камчатский

### Введение

В работе дана общая характеристика сейсмичности Камчатки в 2005-2006 гг. и построены площадные распределения параметров фоновой сейсмичности. В комплекс рассматриваемых характеристик входят общая выделившаяся сейсмическая энергия, активность  $A_{10}$ , наклон графика повторяемости  $\gamma$ , параметры *RTL* и  $\Delta S$ , кластеризация землетрясений и параметры методики «Z-тест». При расчетах использованы каталоги Камчатского филиала Геофизической службы РАН (*http://www.emsd.ru*). Оценки сейсмичности сделаны для района, ограниченного широтой  $\varphi$ =50.5°N и 56.5°N, долготой  $\lambda$ =156.0°E и 167.0°E, глубиной от 0 до 300 км, в который попадает наиболее сейсмоактивная часть Камчатки. Нижний энергетический уровень землетрясений был определен как *K*=8.5, что соответствует уровню надежной регистрации землетрясений для камчатской сейсмоактивной зоны в целом [1]. Из анализа исключены зависимые, группирующиеся события. Используемая для этого программа Смирнова В. Б. (МГУ имени Ломоносова) реализует алгоритм, описанный в работе [2].

# Энергия землетрясений Камчатки

Общая выделившаяся сейсмическая энергия  $E = \sum 10^{K_i}$  гле  $K_i$  – энергетический класс

$$E = \sum_{i} 10$$
, где  $K_i$  – энергетический класс  
землетрясения, составила 5.8·10<sup>13</sup> Дж в 2005 г. и

землетржения, составила 5.6 го дж в 2005 г. и  $1.8 \cdot 10^{14}$  Дж в 2006 г., при среднегодовом (за 45 лет) значении  $6.3 \cdot 10^{14}$  Дж и медианном годовом значении  $1.6 \cdot 10^{14}$  Дж. Согласно функции распределения годовой сейсмической энергии, построенной по всему интервалу детальных наблюдений 1962-2006 гг., в 2005 г. наблюдался пониженный уровень сейсмичности (в 85% случаев годовая сейсмическая энергия превышала эту величину), а сейсмическая энергия, выделившаяся в течение 2006 г., близка к медианному значению (Рис.1).

Половина выделившейся в 2005 г. энергии приходится на два наиболее сильных землетрясения этого года: 7 июля с магнитудой *M*<sub>w</sub>=5.6 и 26 июля с магнитудой M<sub>w</sub>=5.8 (Рис. 2). В течение 2006 г. произошло 7 землетрясений с магнитудой ≥ 5.5: 6 февраля (*M*<sub>w</sub>=5.7), 12 апреля (*M*<sub>w</sub>=6), 18 мая (M<sub>w</sub>=5.7), 22 мая (M<sub>w</sub>=6.2), 17 августа (M<sub>w</sub>=6.1), 24 августа (*M*<sub>w</sub>=6.5) и 1 сентября  $(M_{\rm w}=5.7).$ Сейсмическая энергия, выделившаяся в результате этих землетрясений и связанных с ними афтершоков, составила  $1.3 \cdot 10^{14}$  Дж. Моментные магнитуды  $M_{\rm w}$ , используемые В работе, взяты на сайте Геологической службы США (U.S. Geological Survey, http://earthquake.usgs.gov/). В мае 2006 г. в районе Кроноцкого полуострова был зафиксирован рой землетрясений, состоящий из 40 событий с энергетическими классами 8.5 - 11.2. Сейсмическая энергия, выделившаяся в рое землетрясений, составила 2·10<sup>11</sup> Дж.



Рис.1. Функция распределения годовой сейсмической энергии, выделившейся при камчатских землетрясениях в 1962-2006 гг.



Рис.2. Землетрясения Камчатки 2005-2006 гг. с магнитудой  $M_{\rm w} > 5.5$ . Отмечено положение роя землетрясений (n=40)

### Определение уровня надежной регистрации

Уровень надежной регистрации землетрясений обычно определяют по кумулятивному графику повторяемости землетрясений (Рис. 3*a*). Отклонение графика от линейного тренда означает изменение наклона графика повторяемости  $\gamma$ , что и определяет уровень надежной регистрации  $K_0$ . Иногда уровень надежной регистрации определяют по максимуму графика повторяемости. Отнесем полученные результаты на график зависимости  $\gamma$  от  $K_0$  (Рис. 36).



на интервале значительного изменения у, и поэтому не приемлем. При первом способе отклонение графика повторяемости от прямой определяется обычно визуально, что также часто ведет к неверной оценке К<sub>0</sub>. Для того чтобы определить значение  $K_0$ , ниже которого значимо, изменение γ рассчитаем нормированную вариацию у для каждой пары  $K_{0i}$  -  $K_{0i}$ :

Второй способ определяет К<sub>0</sub>

Рис.3. Иллюстрация к определению уровня надежной регистрации камчатских землетрясений 2005-2006 гг.: график и кумулятивный график повторяемости землетрясений (*a*), зависимость наклона графика повторяемости от  $K_0$  (б), нормированная вариация  $\gamma$  (в)

$$Z_{ij} = \frac{\left|\gamma(K_{0i}) - \gamma(K_{0j})\right|}{\sqrt{\sigma_i^2 + \sigma_j^2}}$$

Будучи нанесенные на координатную плоскость ( $K_{0i}$ ,  $K_{0j}$ ) значения нормированной вариации  $\gamma$  определяют область малых значений Z, в пределах которой наклон графика повторяемости можно считать постоянным. Граница этой области определяет уровень надежной регистрации. Для оперативного каталога камчатских землетрясений 2005-2006 гг. уровень надежной регистрации, определенный таким образом, соответствует энергетическому классу 8.2

# Вариации наклона графика повторяемости у и сейсмической активности A<sub>10</sub>

Определение наклона графика повторяемости  $\gamma$  и сейсмической активности  $A_{10}$  основано на повторяемости землетрясений как фундаментальном свойстве сейсмического процесса.

Наклон графика повторяемости  $\gamma$  в 2005 г. равен 0.50±0.02, в 2006 г. - 0.48±0.02, что соответствует в пределах ошибки определения среднемноголетнему значению 0.496±0.002. Средняя по исследуемому району активность  $A_{10}$  в 2005 г. составила 0.271±0.007, в 2006 г. - 0.248±0.006 при среднемноголетнем значении 0.285±0.001. Среднеквадратичное отклонение по выборке среднегодовых значений  $A_{10}$  составляет 0.03. Таким образом, по средним для Камчатки значениям параметров  $\gamma$  и  $A_{10}$  2005-2006 гг. не являются аномальными. Площадные распределения  $A_{10}$  (Рис. 4) и  $\gamma$  (Рис. 5) в 2005-2006 г. также в целом соответствуют среднемноголетним распределениям, поэтому более информативными являются карты относительных значений  $A_{10}$  и



Рис.4. Карты сейсмической активности A<sub>10</sub>, рассчитанные для 2005-2006 г., для сравнения – для 1962-2006 г., активности A<sub>10</sub> для 2005-2006 г., нормированной на многолетнюю активность

вариаций  $\gamma$ . Из анализа карты относительных значений  $A_{10}$ , полученных на каталоге за 2005-2006 гг. и многолетнем (за 45 лет) каталоге, следует, что в исследуемый период времени наибольшая



Рис. 5. Карты наклона графика повторяемости у, рассчитанные для 2005-2006 г. и для 1962-2006 г.



Рис.6. Карты вариаций у в 2005-2006 гг. относительно многолетнего фона и относительно 2001-2004 гг. Изолинии соответствуют радиусу ячейки, содержащей 100 событий, окружности - размерам аномалий.

Мониторинг параметров RTL и  $\Delta S$ 

Методика расчета параметров RTL и  $\Delta S$  основана на предположении, что в районе готовящегося землетрясения последовательно сменяют друг друга стадии сейсмического затишья и форшоковой активизации. Согласно модели авторов [11], пространственно- временные области с отрицательными значениями параметра RTL соответствуют зонам формирования сейсмического затишья, и значительное сейсмическое событие следует ожидать на краю области аномально низких значений RTL в интервале до трех лет после выхода RTL из минимума.

В 2001-2003 гг. в Камчатском заливе и в южной части сейсмоактивной зоны (Рис.7) существовали сейсмические аномалии по параметру *RTL*. Для характерных точек аномалий



построены графики *RTL* (Рис.8), согласно которым, затишья в обеих зонах завершились осенью 2003 г. Значения *RTL* достигали -18 и -12, длительность затишья - 1.7 года и 2 года для северной и южной аномалий, соответственно.

До настоящего времени в районе этих аномалий не произошли землетрясения с  $M \ge 7$ , на которые ориентирован метод *RTL*.

Рис. 7. Карта минимальных значений *RTL* в 2001-2003 гг. Слева - для северной, справа - для южной части сейсмоактивной области Камчатки.

относительная активность  $A_{10}$ наблюдалась в районе острова Беринга, на севере Камчатского залива, в восточной части Кроноцкого залива и в Авачинском заливе.

Карты нормированной вариации γ для 2005-2006 гг. по сравнению с многолетним фоном и по сравнению с 2001-2004 гг. представлены на рис. 5. Карты построены при района сканировании элементарными ячейками переменного радиуса R с фиксированным количеством (*N*=100) попавших в них землетрясений. Проведенное сканирование позволило выделить южнее Кроноцкого полуострова аномалию статистически значимого уменьшения относительно многолетнего значения. Следует также отметить наблюдающийся в Камчатском заливе процесс уменьшения у в 2005-2006 гг. по сравнению с 2001-2004 гг.



Рис.8. Временной ход RTL для характерных точек северной (слева) и южной (справа) аномалий 2001-2003 гг.

На Рис. 9 представлена карта минимальных значений параметра *RTL*, наблюдавшихся в сейсмоактивной области Камчатки в течение 2005-2006 гг. Штриховой линией отмечена область сканирования, за пределами которой аномалия не считается достоверной. Для характерных точек аномалии *RTL*, проявившейся восточнее Кроноцкого полуострова, построены временные графики параметра *RTL*, из которых следует, что аномалия сейсмического затишья по параметру RTL 2005-2006 гг. длилась  $\approx 16$  месяцев и завершилась в августе 2006 г.



Рис.9. Слева: карта минимальных значений *RTL* в 2005-2006 гг. Справа: временной ход параметра *RTL* для точек I и II за весь период детальных наблюдений (*вверху*) и за последние 2.5 года (*внизу*).

Выявление сейсмической активизации построено на основе анализа площадей сейсмогенных разрывов. Вычисляется разница  $\Delta S$  между накопленной площадью сейсмогенных разрывов в пределах круговой области радиусом  $R_{max}$ =50 км за последний год и среднегодовым значением. Согласно картам максимальных вариаций площадей сейсмогенных разрывов  $\Delta S$  в 2005-2006 гг. (Рис. 10), сейсмическая активизация происходила в непосредственной близости к аномалиям сейсмического затишья по параметру *RTL* 2001-2003 гг. (Рис. 7), что может означать переход подготовки сильного землетрясения в стадию форшоковой активизации.



Рис.10. Карта максимальных значений  $\Delta S$  в 2005 - 2006 гг.

Рис.11. Карта эпицентров главных событий кластеров 2005 г. и 2006 г. при различных значениях параметров  $k_0$  и  $K_0$ .

## Контроль кластеризации землетрясений

Образование кластеров может свидетельствовать о стягивании сейсмической активности к месту будущего макроразрыва [3]. Параметрами кластеров являются минимальный класс землетрясений в кластере  $k_0$  и минимальный класс основного события в кластере  $K_0$ .

На Рис. 11 отмечены кластеры, выделенные в 2005 г. и 2006 г. в исследуемой области Камчатки. Основная часть кластеров 2005 г. произошла на юге Камчатки, в полосе широт от  $50^{\circ}N$  до  $53^{\circ}N$ . Причем эта особенность наблюдается для кластеров с различной энергией и соответствует южной области сейсмической активизации 2005-2006 гг. (Рис.10). Кластеры 2006 г. распределены более равномерно. Следует отметить, что кластеры с наибольшей энергией смещены на север сейсмоактивной зоны Камчатки, их положение также соответствует зонам сейсмической активизации по параметру  $\Delta S$ 

## Выявление сейсмических затиший по методу «Z-тест»

Метод «Z-тест» опирается на работу [4] и, также как и метод *RTL*, ориентирован на выявление сейсмических затиший как временных аномалий в сейсмическом режиме отдельных пространственных областей. Основными характеристиками методики являются параметр  $LTA(t,\Delta t) = Z = (R_2 - R_1)/\sqrt{\sigma_1^2 + \sigma_2^2}$ , определяющий статистическую значимость различий в скоростях сейсмического потока *R* на двух временных участках (один – длительностью  $\Delta t$  и



Рис.12. Карта зон сейсмических аномалий, выделяемых *Z*-тестом. Отмечены эпицентры землетрясений с М≥6, произошедших в 2005-2006 гг.

привязанный ко времени t окончания этого участка, другой – включает в себя все остальное время) и параметр  $SRD(t,\Delta t) = 1 - R_2 / R_1$ , определяющий величину уменьшения скорости сейсмического потока.

В 2005-2006 гг. интерес представляли 5 пространственных областей (зон), в которых наблюдалось уменьшение скорости сейсмического потока не менее, чем в 8 раз, по сравнению с фоновой, в течение не менее года (Рис. 9).

Кажлое сейсмическое затишье характеризовалось большими значениями Z (LTA > 7).В зонах 1 и 2 скорость сейсмического потока была в 8 раз меньше фоновой в течение 2004 г. В зоне 3 затишье длительностью 13 месяцев закончилось в апреле 2005 г. В зоне 4 отмечено уменьшение скорости сейсмичности в 8 раз с июля 2004 г. по сентябрь 2005 г., в зоне 5 с сентября 2005 г. по декабрь 2006 г.

На рис. 9 отмечены также эпицентры землетрясений 2005-2006 гг. с магнитудой не менее 6, на которые ориентирован метод *Z*-тест. Пространственно-временной связи между этими землетрясениями и выделенными аномалиями выявлено не было.

#### Список литературы

1. Гордеев Е.И., Чебров В.Н., Левина и др. Система сейсмологических наблюдений на Камчатке // Вулканология и сейсмология. 2006. №3. С. 6-27.

2. Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Современные методы обработки сейсмологических данных (Вычислительная сейсмология. Вып.24). М.: Наука, 1991. С.19-50.

3. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.

4. Wyss M., Habermann R.E. Precursory quiescence // Pageoph. 1988. Vol.126. P.319-332