## МОДЕЛИРОВАНИЕ ЗОН ГЕОАКУСТИЧЕСКОЙ ЭМИССИИ

# Водинчар Г.М., <u>Пережогин А.С.</u>, Сагитова Р.Н., Шевцов Б.М.

### Институт космофизических исследований и распространения радиоволн ДВО РАН, Паратунка, Елизовский район, Камчатский край, drew72156@yandex.ru

#### Введение

При проведении геоакустических наблюдений на Камчатке регистрируются предвестники землетрясений в килогерцовом диапазоне частот за сотни километров от эпицентров [3, 5, 6]. Фоновый уровень акустических сигналов соответствует уровню приливных относительных деформаций 10<sup>-8</sup>. В период подготовки землетрясений происходит деформация горных пород. При этом интенсивность геоакустической эмиссии возрастает за 1-2 дня до сейсмического события на порядки [5]. В настоящей работе предложена модель зон геоакустической эмиссии на основе расчета напряженно-деформированного состояния земной коры.

В качестве механизма очага землетрясений используются модели сосредоточенной силы и различных дипольных структур [4]. В работе [1] проведены исследования разуплотнения горных пород при подготовке землетрясений, вызываемого простой сосредоточенной силой<sup>\*</sup>. Следует отметить, что дилатансия в горных породах возникает при уровнях деформаций, близких к разрушительным. Геоакустическая эмиссия очень чувствительна к изменению деформированного состояния горных пород и может генерироваться на уровнях деформаций, которые на порядки меньше критических.

При расчете напряжений и деформаций на значительном удалении от эпицентров землетрясений использовалась модель простой сосредоточенной силы. Для проведения расчетов и визуализации результатов была разработана программа «ДИЛАТЕН» [7], с помощью которой выполнялись вычисления компонент тензоров напряжений и деформаций по модели Миндлина [8] и анализ пространственного распределения зон геоакустической эмиссии. Полученные решения позволили определить особенности распределения зон и расстояния, на которых возможна регистрация геоакустических сигналов для реальных сейсмических событий.

## Моделирование зон геоакустической эмиссии

Рассмотрим земную кору как однородное, изотропное и упругое полупространство. Как отмечалось выше, решение задачи Миндлина для сосредоточенной силы в упругом полупространстве [8] может быть использовано при моделировании зон дилатансии [1] и геоакустической эмиссии. В [8] приводятся аналитические выражения для напряжений и деформаций в случае, когда сила действует под углом к границе полупространства. Сдвиговые деформации  $\tau_{xy}$  определяются недиагональной компонентой тензора напряжений:

$$\begin{aligned} \tau_{xy} &= \frac{F_x y}{8\pi(1-\nu)} \left( -\frac{1-2\nu}{R_1^3} + \frac{1-2\nu}{R_2^3} - \frac{3x^2}{R_1^5} - \frac{3x^2(3-4\nu)}{R_2^5} - \frac{4(1-\nu)(1-2\nu)}{R_2(R_2+z+c)^2} \times \right. \\ &\times \left( 1 - \frac{x^2(3R_2+z+c)}{R_2^2(R_2+z+c)} \right) - \frac{6cz}{R_2^5} \left( 1 - \frac{5x^2}{R_2^2} \right) \right) + \frac{F_z xy}{8\pi(1-\nu)} \left( -\frac{3(z-c)}{R_1^5} - \frac{3(3-4\nu)(z-c)}{R_2^5} + \right. \\ &+ \frac{4(1-\nu)(1-2\nu)}{R_2^2(R_2+z+c)} \left( \frac{1}{R_2+z+c} + \frac{1}{R_2} \right) - \frac{30cz(z+c)}{R_2^7} \right), \end{aligned}$$
(1)

где v – коэффициент Пуассона, c – глубина приложения силы на оси OZ,  $F_x$  – проекция силы на ось OX,  $F_z$  – проекция силы на ось OZ,  $R_1 = \sqrt{(x^2 + y^2 + (z-c)^2)}$ ,  $R_2 = \sqrt{(x^2 + y^2 + (z-c)^2)}$ . Остальные недиагональные компоненты тензора будут нулевыми, так как поверхность z=0 является свободной.

Диагональные компоненты тензора напряжений описывают сжатие и растяжение. По отношению к первым прочность пород значительно выше, поэтому сжатие можно не рассматривать, а растяжение в интересующей нас области пространства, которая будет рассмотрена ниже, не возникает.

<sup>&</sup>lt;sup>\*</sup> Общепринятой моделью землетрясения является двойная пара сил без момента – Прим. ред.

Если предположить возникновение простой силы на сочленении двух тектонических плит (рис. 1), то такую модель источника напряжений можно использовать для описания деформаций в области движения океанической плиты под континент у берегов Камчатки.

Значение сосредоточенной силы *F*, вызывающей землетрясение с энергетическими классами К=11-16, определим по сейсмическому моменту [2] и предельному сжатию породы.



Рис. 1. Зона субдукции. *F* – сосредоточенная сила, *L* – линейный размер выступа.

Выберем параметры упругой среды аналогично работе [1]: коэффициент Пуассона v=0.25, модуль Юнга –  $8.7 \cdot 10^{10}$  Па. Результаты вычислений модуля недиагональной компоненты тензора напряжений  $\tau_{xy}$  по формуле (1) представлены на рис. 2а и 26, на которых штриховкой показаны пространственные зоны по уровням относительных сдвиговых деформаций:  $10^{-8}-10^{-7}$ ,  $10^{-7}-10^{-6}$ ,  $10^{-6}-10^{-5}$  и  $10^{-5}-10^{-4}$ . Напряжения пересчитываются в деформации по линейному закону.



Рис. 2. Зоны относительных сдвиговых деформаций: а – для землетрясения 15.03.2003 г., К=13.8; б - для землетрясения 09.11.2003 г., К=12.3. Условные обозначения: 1 – эпицентры землетрясений, 2 – пункт геоакустических наблюдений «Карымшина», 3 – пункт геоакустических наблюдений «Микижа».

Для сейсмических событий с K>12 зоны относительных сдвиговых деформаций по уровню  $>10^{-8}$  простираются на расстояния до первых сотен км от эпицентра, что согласуется с наблюдениями. Однако такая простая модель не может дать описание всех особенностей распространения деформаций. Так, например, геоакустические эффекты наблюдались перед событиями с K=13 на удалении до 600 км от эпицентров [6]. Это может быть связано с пространственной неоднородностью строения полигона, наличием осадочных пород, существенно отличающихся по своим физическим свойствам от базальтов, параметры которых были использованы в данной работе, или с распространением тектонических волн. О пространственных зонах геоакустической эмиссии, отличающихся по своей интенсивности, нельзя судить только по уровню относительных сдвиговых деформаций, т. к. интенсивность эмиссии может зависеть также от скорости изменения деформаций и от предыстории деформационного процесса.

Зоны относительных сдвиговых деформаций обладают ярко выраженной анизотропией, которая может объяснить парадоксальные случаи отсутствия геоакустических эффектов в близких пунктах наблюдений, расположенных недалеко от оси симметрии зон. Один из примеров ослабления геоакустических эффектов в зависимости от положения пунктов наблюдений представлен на рис. За.

Согласно свойствам сдвиговых источников в упругой среде, максимум углового распределения их акустического излучения совпадает с вектором смещения. В рамках модели Миндлина проведены расчеты векторов смещений и найдено их отклонение от направлений радиус-векторов точек на свободной поверхности. Результаты расчетов представлены на рис. 36. Они показывают, насколько пеленг акустических сигналов отклоняется от направления на источник деформаций. Показаны только две зоны отклонения пеленга, а на самом деле оно меняется плавно в зависимости от азимутального угла. При анализе наблюдений геоакустической эмиссии [3] установлено, что отклонение пеленга акустического сигнала от направления на источник деформаций меняется в пределах 2-54° (среднее значение 27.8°). Видно, что расчеты неплохо согласуются с результатами наблюдений. Это свойство пеленга акустического сигнала позволяет осуществлять локацию областей подготовки землетрясений [3].



Рис. 3. Зоны относительных деформаций (а) и области отклонения пеленга акустического сигнала от направления на эпицентр (б). Условные обозначения см. рис. 2а.

#### Заключение

Предложена модель зон геоакустической эмиссии перед сильными сейсмическими событиями, которые определяются по уровням относительных деформаций. На основе модельных расчетов показано, что относительные деформации, вызываемые простой силой, действующей в очагах сильных землетрясений, превышают уровень 10<sup>-8</sup> на расстояниях в первые сотни километров от эпицентра. Анализ недиагональной компоненты тензора деформаций позволил объяснить особенности пространственного распределения землетрясений, подготовка которых не сопровождается сигналами геоакустической эмиссии в пунктах наблюдений. Найдены отклонения пеленга акустических сигналов от направления на эпицентр землетрясения в зависимости от азимутального угла. Работа выполнена при финансовой поддержке ДВО РАН, грант 06-1-0-00-070

#### Список литературы

1. Алексеев А.С., Белоносов А.С., Петренко В.Е. О концепции многодисциплинарного прогноза землетрясений с использованием интегрального предвестника // Проблемы динамики литосферы и сейсмичности. М.:ГЕОС, 2001. С. 81-97.

2. Голицын Г.С. Место закона Гутенберга-Рихтера среди других статистических законов природы // Проблемы динамики литосферы и сейсмичности. М.: ГЕОС, 2001. С.138-161.

3. Гордиенко В.А., Гордиенко Т.В., Купцов А.В. и др. Геоакустическая локация областей подготовки землетрясений // ДАН. 2006. Т. 407. С. 669–672.

4. Касахара К. Механика землетрясения. М: Мир, 1981. С. 264.

5. Купцов А.В. Изменение характера геоакустической эмиссии в связи с землетрясением на Камчатке // Физика Земли. 2005. № 10. С. 59-65.

6. Купцов А.В., Ларионов И.А., Шевцов Б.М. Особенности геоакустической эмиссии при подготовке камчатских землетрясений // Вулканология и сейсмология. 2005. № 5. С. 45-59.

7. Пережогин А.С. «ДИЛАТЕН» (Визуализация компонент тензора напряжений и зон дилатансии для упругого полупространства). Москва: ВНТИЦ, 2006. № гос. рег. 50200600307.

8. Mindlin R., Cheng D. Nuclei of strain in the semi-finite solid // J. Appl. Phys. 1950. V. 21. № 9. P. 926-930.