РАЗЛИЧИЕ ЗНАЧЕНИЙ ПАРАМЕТРА У ДЛЯ НЕЗАВИСИМЫХ ЗЕМЛЕТРЯСЕНИЙ И АФТЕРШОКОВЫХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

<u>Коновалова А.А.</u>^{1,2}, Салтыков В.А.^{1,2}

¹Камчатский филиал Геофизической службы РАН, Петропавловск-Камчатский,salt@emsd.ru ²Камчатский государственный университет им. В. Беринга, Петропавловск-Камчатский, КопоvalovAnna@mail.ru

Введение

Одним из показателей сейсмического режима является наклон графика повторяемости землетрясений γ (в случае использования шкалы магнитуд аналогом γ является параметр b [7]). Т. к. сейсмический процесс включает в себя независимые и группированные землетрясения (афтершоки, рои), то актуален вопрос о возможности использования значения у, полученного по всем землетрясениям, для характеристики фоновой сейсмичности. Из общих соображений следует, что афтершоковый процесс отражает релаксацию среды после сильного землетрясения, и он обладает характеристиками, отличными от характеристик фоновой сейсмичности так же, как и рои землетрясений. Это объясняет то, что в настоящее время перед расчетом параметра у из каталога удаляются группированные события. Однако необходимость такого удаления не проверялась экспериментально. В данной работе рассматриваются только афтершоки. Ответ на вопрос: «Необходимо ли очищать каталог от афтершоковых последовательностей?» является целью данной работы. Ответ может быть получен после 1) сравнения значений наклона графика повторяемости у, посчитанных для последовательностей афтершоков сильных землетрясений и для каталога, очищенного от них; 2) оценки статистической значимости полученных различий. В работе использовался региональный каталог землетрясений Камчатского филиала Геофизической службы PAH (http://www.emsd.ru).

Методика

Наклон графика повторяемости рассчитывается по методу наибольшего правдоподобия, исходя из экспоненциального распределения землетрясений по энергетическому классу K. При этом применяется формула [7] с поправкой на использование энергетического класса K вместо магнитуды M:

$$\gamma = \log_{10} e \cdot \frac{1}{\sum_{i=1}^{N} \frac{K_i}{N} - K_0}$$

где N – число всех сейсмических событий в выбранной для расчета области пространствавремени-энергии, K_i – энергетический класс землетрясения ($K_s^{\Phi 68}$ [6]), K_0 – минимальный энергетический класс, соответствующий нижнему уровню надежной регистрации землетрясений.

Среднеквадратичная ошибка оценки γ определяется по формуле [3]: $\sigma_{\gamma} = \frac{\gamma}{\sqrt{N}}$. Т. к. число

землетрясений в каждой афтершоковой последовательности различно, то различны и относительные ошибки определения *у*. Расчеты проводились в трех вариантах. Для каждого

Рис.1 Пример кумулятивного графика повторяемости.

варианта был зафиксирован максимальный уровень относительной ошибки определения γ-δ_γ:

$$\delta_{\gamma} = \frac{\sigma_{\gamma}}{\gamma} = \frac{1}{\sqrt{N}} \le 0.1, 0.14 \text{ M} 0.2.$$

Таким образом, были определены три уровня минимального числа афтершоков в последовательностях, используемых при расчете $\gamma: N \ge 100, N \ge 50$ и $N \ge 25$.

При построении кумулятивного графика повторяемости (рис. 1), в отличие от гистограмм, отсутствует произвол в выборе разбиения на интервалы, а при расчете величины γ используется лишь предположение об экспоненциальном типе распределения землетрясений по энергиям. В этом случае рассматривается все множество энергетических классов { K_i }. Существенную роль играет значение нижнего порога { K_i } - K_0 (в данном случае K_0 =8.5, что соответствует уровню надежной регистрации землетрясений [1]). Рассматривая более слабые землетрясения с $K < K_0$ могут быть получены неверные значения γ , а точность определения будет необоснованно завышена.

Обработка

Для выделения афтершоковых групп из каталога использовалась методика Молчана-Дмитриевой [4]. Программа написана и предоставлена В. Б. Смирновым (МГУ им. Ломоносова). В данной работе использованы каталог афтершоков сильных землетрясений, а также каталог, очищенный от афтершоков.

В результате анализа каталога группированных событий выделены 21 афтершоковая последовательность, в которых количество афтершоков превышало установленный порог 100; 43 последовательности – с $N \ge 50$ и 88 – с $N \ge 25$. Кроме этого были определены следующие условия: диапазон глубин землетрясений 0-100 км; диапазон энергетических классов 8.5-16. В табл. 1 представлены в качестве примера данные афтершоковых последовательностей для выборки $N \ge 100$.

Дата гггг-мм-дд	Bpe	емя (ч,	мин., с)	M_S	K	φ, °с.ш.	λ, °в.д.	Н, км	$N_{\mathrm{a}\phi\mathrm{t}}$	<i>Т</i> , сут.
1969-01-21	23	12	7,8		12,3	55,85	163,26	5	215	282,5
1969-11-22	23	9	31,5	7,7	15,3	57,93	164,00	40	283	1793,6
1971-12-15	8	29	55,0		15,4	55,97	163,35	20	670	567,1
1973-02-28	6	37	49,4	7,5	15,1	49,97	157,06	59	250	460,1
1975-07-02	7	34	19,5		11,3	55,65	160,20	18	108	445,6
1976-01-06	22	17	43,1	6,2	13,7	51,36	159,69	5	235	1042,1
1978-03-02	14	34	56,7	5,7	13,2	55,07	164,79	42	145	672,1
1980-01-23	2	34	10,4	6,0	13,7	52,22	160,36	14	220	190,0
1983-03-13	10	6	10,4	4,6	12,0	52,34	157,82	0	133	579,2
1983-08-17	10	55	55,5	6,8	15,4	55,64	161,53	97	191	1697,4
1984-12-28	10	37	53,6	7,5	14,0	56,18	163,45	19	136	460,4
1992-03-02	12	29	38,5	7,1	14,6	52,76	160,20	20	139	667,9
1993-06-08	13	3	37,0	7,4	15,0	51,20	157,80	40	258	447,2
1996-01-01	9	57	45,8	7,0	14,3	53,88	159,44	0	441	999,5
1996-06-21	13	57	5,6	7,3	13,9	51,27	159,63	2	496	811,6
1997-12-05	11	26	51,0	7,9	15,5	54,64	162,55	10	1642	532,4
1999-11-26	15	57	33,8	5,6	13,4	55,06	165,51	36	178	997,9
2001-10-08	18	20	37,5	6,6	14,1	52,63	160,49	24	198	595,5
2003-03-15	19	41	24,3	5,8	13,3	52,15	160,66	4	110	965,2
2003-12-05	21	26	14,1	6,8	14,8	55,78	165,43	29	124	1049,6
2006-04-20	23	24	55,5		15,0	61,06	167,58	4	149	183,5

Таблица 1. Параметры землетрясений и их афтершоковых последовательностей

Дата – дата землетрясения, имеющего афтершоки; φ и λ – широта и долгота землетрясения; M_s и K – магнитуда (по каталогу ГС РАН) и энергетический класс ($K_s^{\phi 68}$); Н – глубина гипоцентра; $N_{a\phi r}$ – количество афтершоков в последовательности; T – длительность афтершоковой последовательности.

Пространственное расположение эпицентров главных событий и их афтершоковых последовательностей показано на рис. 2.

В горизонтальной плоскости область афтершоков оценивалась как 2 σ -эллипс рассеяния их эпицентров согласно двумерному Гауссовскому распределению. При нормальном распределении в такой эллипс должно попадать \approx 95% событий. Для каждой афтершоковой последовательности рассчитывались значения следующих параметров (табл.2): *а* и *b* - большая и малая полуоси 1 σ эллипса; *Az* - угол между большей полуосью эллипса и направлением на север в градусах; λ^0 и ϕ^0 координаты центра эллипса; *x*₀ и *y*₀ - расстояния по осям, на которые смещен центр эллипса от эпицентра главного события. Дата и время в таблице указаны для землетрясений, которым соответствуют рассматриваемые афтершоковые последовательности.

Далее для каждой пространственной зоны афтершоков в виде эллипса производилась выборка независимых событий, эпицентры которых попали в эту область за время детальных сейсмологических наблюдений.

Эпицентры афтершоков, их область рассеяния в пространстве, а также выделенные для этой области фоновые землетрясения на примере одной афтершоковой последовательности (21.01.1969, Ks = 12.3) показаны на рис. 3.

Дальнейший анализ фоновой сейсмичности проводился в пределах полученных эллипсов.

Рассчитывались у афтершоковых последовательностей и у независимых (фоновых) событий по приведенным выше формулам. Полученные значения наклонов графика повторяемости и их ошибки приведены в таблице 3.

Пустые ячейки в табл. 3 означают, что полученные значения не удовлетворяют условию «количество событий должно быть больше 100», которое обязательно не только для афтершоков, но и для независимых событий (т. е. афтершоки происходили в области очень низкой фоновой сейсмичности).

Поэтому пять афтершоковых последовательностей, выделенные в таблице

Рис.2 Схема пространственного расположения эпицентров главных землетрясений и их афтершоковых последовательностей + - эпицентры афтершоков; - эпицентры главных

событий

Дата гггг-мм-дд	Bpe	Время (ч, мин., с)		a	b	b x_0 y_0		Az	λ ⁰ и φ ⁰ центра эллипса	
1969-01-21	23	12	7.8	11.2	8.0	3.7	-2.4	56.47	163.319	55.828
1969-11-22	23	9	32	39.0	25.3	-27.0	-74.6	-71.32	163.542	57.258
1971-12-15	8	29	55	38.7	26.4	9.9	-21.8	24.47	163.509	55.774
1973-02-28	6	37	49	32.8	18.4	6.9	35.5	-63.30	157.157	50.290
1975-07-02	7	34	20	7.8	4.3	7.1	6.4	-47.11	160.313	55.708
1976-01-06	22	17	43	19.8	13.3	-7.7	10.2	43.90	159.579	51.452
1978-03-02	14	34	57	9.8	7.0	-4.0	-14.6	1.54	164.727	54.938
1980-01-23	2	34	10	12.7	11.7	10.4	3.4	66.43	160.513	52.251
1983-03-13	10	6	10	3.1	2.2	6.5	-2.2	86.75	157.916	52.320
1983-08-17	10	55	56	10.0	5.4	17.6	-8.3	66.17	161.811	55.565
1984-12-28	10	37	54	13.8	8.8	9.1	2.3	-19.85	163.597	56.201
1992-03-02	12	29	39	8.9	6.4	-11.2	9.1	-33.30	160.033	52.842
1993-06-08	13	3	37	33.7	17.8	42.2	3.4	-63.80	158.407	51.231
1996-01-01	9	57	46	8.5	4.3	-2.6	-0.1	-48.83	159.400	53.879
1996-06-21	13	57	5.6	19.5	15.3	5.0	20.9	-2.06	159.702	51.458
1997-12-05	11	26	51	54.3	27.2	-35.4	-51.5	-56.85	161.999	54.176
1999-11-26	15	57	34	10.1	6.0	7.5	-1.9	65.25	165.628	55.043
2001-10-08	18	20	38	17.1	7.0	-0.4	-2.5	48.74	160.484	52.607
2003-03-15	19	41	24	12.2	6.6	-3.9	12.2	48.60	160.603	52.260
2003-12-05	21	26	14	15.8	6.2	17018.3	-14.9	83.36	165.723	55.646
2006-04-20	23	24	56	43.1	22.1	-30.3	-12.3	-35.36	167.016	60.949

Таблица 2. Параметры выделенных пространственных зон афтершоковых последовательностей

серым цветом, не использовались в дальнейших расчетах.

npoerpanerb	cinito	100	Juc I II.	•				
Дата		Bper	ия	афтер	шоки	фон		
гггг-мм-дд	(ч	, ми	H., C)	γ	σ_{ν}	γ	σ,	
1969-01-21	23	12	7.8	0.47	0.03	0.44	0.04	
1969-11-22	23	9	31.5	0.47	0.03			
1971-12-15	8	29	55.0	0.40	0.02	0.50	0.01	
1973-02-28	6	37	49.4	0.30	0.02	0.40	0.01	
1975-07-02	7	34	19.5	1.19	0.11			
1976-01-06	22	17	43.1	0.31	0.02	0.36	0.02	
1978-03-02	14	34	56.7	0.43	0.04	0.40	0.05	
1980-01-23	2	34	10.4	0.36	0.02	0.37	0.02	
1983-03-13	10	6	10.4	0.70	0.06			
1983-08-17	10	55	55.5	0.39	0.03	0.39	0.04	
1984-12-28	10	37	53.6	0.42	0.04	0.49	0.03	
1992-03-02	12	29	38.5	0.49	0.04	0.40	0.02	
1993-06-08	13	3	37.0	0.50	0.03	0.48	0.01	
1996-01-01	9	57	45.8	0.54	0.03			
1996-06-21	13	57	5.6	0.37	0.02	0.36	0.02	
1997-12-05	11	26	51.0	0.35	0.01	0.54	0.01	
1999-11-26	15	57	33.8	0.42	0.03	0.34	0.03	
2001-10-08	18	20	37.5	0.43	0.03	0.44	0.02	
2003-03-15	19	41	24.3	0.36	0.03	0.39	0.03	
2003-12-05	21	26	14.1	0.44	0.04	0.51	0.05	
2006-04-20	23	24	55.5	033	0.03			

Таблица 3. Значения наклонов графика повторяемости и их ошибки, посчитанные для каждой афтершоковой последовательности и фоновой сейсмичности в той же пространственной области.

Рис. 3. Диаграмма области рассеяния афтершоков и распределения независимых событий в пространстве:

а – большая полуось; Аz – угол поворота эллипса
на север; ● - эпицентр главного события; ■ и ▲ - эпицентры афтершоков и фоновых событий.

Можно отметить, что три последовательности землетрясений (Асачинская (1983-03-13), Щапинская (1975-07-02) и Карымская (1996-01-01)) являются сильнейшими проявлениями коровой сейсмичности на полуострове, и их эпицентры находятся в континентальной части Камчатки.

По аналогичным причинам для выборок $N \ge 50$ и $N \ge 25$ в расчетах участвовали только 39 и 83 последовательностей соответственно.

Сравнение значений наклонов графика повторяемости

Для сравнения величин наклонов графика повторяемости афтершоков и фона использовался параметр Z – разность $\Delta \gamma = (\gamma_{adm} - \gamma_{don})$, нормированная на ошибку ее определения:

$$Z = \frac{\left(\gamma_{a\phi m} - \gamma_{\phi o H}\right)}{\sqrt{\sigma_{\gamma_{a\phi m}}^2 + \sigma_{\gamma_{\phi o H}}^2}} [5].$$

Полученные значения сведены в таблицу 4, где

$$\Delta \gamma = (\gamma_{a\phi m} - \gamma_{\phi o \mu}), \ \sigma_{\gamma} = \sqrt{\sigma_{\gamma a\phi m}^{2} + \sigma_{\gamma \phi o \mu}^{2}}, \ Z = \frac{\Delta \gamma}{\sigma_{\gamma}}.$$

Видно, что значения Z имеют большой разброс и не всегда одного знака. На основании только визуального анализа величин Z сделать какой-либо вывод представляется затруднительным, поэтому проведен дополнительный статистический анализ.

За нулевую гипотезу H₀ принята гипотеза о равенстве наклонов графика повторяемости афтершоковых последовательностей $\gamma_{a\phi m}$ и фоновых событий $\gamma_{\phi o n}$. $\gamma_{a\phi m} = \gamma_{\phi o n}$. В этом случае ожидается, что параметр Z имеет нормальное распределение с нулевым математическим ожиданием и единичной дисперсией N(0, 1).

Для проверки нулевой гипотезы использовался критерий Колмогорова-Смирнова [2]. В соответствии с условиями применения критерия Колмогорова-Смирнова построены теоретическая и эмпирическая функции распределения Z (рис. 4). Теоретическая функция распределения строилась по табличным значениям нормального распределения [5]. Для эмпирической функции распределения использовалась формула: $F(Z) = \frac{n_Z}{n}$, где n_Z – число наблюдаемых значений Z_i , меньших Z; n – объем выборки Z.

Во всех трех случаях эмпирические функции распределения не совпадают с теоретическими и отстоят от них на максимальных расстояниях $D_{100} = 0.237$ при Z= -1.09, $D_{50} = 0.150$ при Z= -1.40, $D_{25} = 0.163$ при Z= 0.94.

По таблице критических значений статистик Стефенса [2] определено, что таким значениям D соответствует уровень значимости $\alpha = 0.150$.

Рис. 4. Функции распределения параметра *Z* эмпирическая; — теоретическая

Таким образом, нулевая гипотеза отклоняется по уровню значимости 0.15. Следовательно, значения наклонов графика повторяемости афтершоковых последовательностей $\gamma_{a\phi m}$ не соответствуют значениям наклонов для фоновых землетрясений $\gamma_{\phi on}$. Отсюда делаем вывод о необходимости удаления группированных землетрясений из каталога.

Заключение

Получены значения параметра γ для независимых землетрясений и афтершоков при различных условиях выборки ($N \ge 100$, 50 и 25).

Проведенный анализ показал статистически значимое отличие величин наклонов графика повторяемости для афтершоков и независимых землетрясений.

Обоснована необходимость удаления афтершоковых

Таблица.4.	Значения	параметра Z и	его	составляющих

Дата ГГГГ-мм-лл	(1	Врем 1. мин	ия 1с)	$\Delta\gamma$	σ_{γ}	Ζ
1969-01-21	23	12	7,8	0,03	0,05	0,60
1971-12-15	8	29	55,0	-0,10	0,02	-4,47
1973-02-28	6	37	49,4	-0,10	0,02	-4,47
1976-01-06	22	17	43,1	-0,05	0,03	-1,77
1978-03-02	14	34	56,7	0,03	0,06	0,47
1980-01-23	2	34	10,4	-0,01	0,03	-0,35
1983-08-17	10	55	55,5	0,00	0,05	0,00
1984-12-28	10	37	53,6	-0,07	0,05	-1,40
1992-03-02	12	29	38,5	0,09	0,04	2,01
1993-06-08	13	3	37,0	0,02	0,03	0,63
1996-06-21	13	57	5,6	0,01	0,03	0,35
1997-12-05	11	26	51,0	-0,19	0,01	-13,44
1999-11-26	15	57	33,8	0,08	0,04	1,89
2001-10-08	18	20	37,5	-0,01	0,04	-0,28
2003-03-15	19	41	24,3	-0,03	0,04	-0,71
2003-12-05	21	26	14,1	-0,07	0,06	-1,09

последовательностей из каталога землетрясений перед расчетом наклона графика повторяемости.

Список литературы

1. Гордеев Е.И., Чебров В.Н., Левина В.И. и др. Система сейсмологических наблюдений // Комплексные сейсмологические и геофизические исследования Камчатки. Петропавловск-Камчатский, 2004. С. 11-42. 2. Кобзарь А. И., Прикладная математическая статистика. М: ФИЗМАТЛИТ, 2006.

3. Куллдорф Г. Вопросы теории оценивания. М.: Наука, 1966.

4. Молчан Г.М., Дмитриева О.Е. Идентификация афтершоков: обзор и новые подходы // Современные методы обработки сейсмологических данных. Вычислительная сейсмология. Вып. 24. М.: Наука, 1991. С. 19-50.

5. Смирнов Н. В., Дунин-Барковский И. В., Курс теории вероятностей и математической статистики. М: Наука, 1969.

6. Федотов С. А. Энергетическая классификация Курило-Камчатских землетрясений и проблема магнитуд. М.: Наука, 1972.

7. Aki K. Maximum Likelihood Estimate of b in the Formula logN=a-bM and its Confidence Limits // Bull. Earthquake Res. Ins. 1965. V. 43. P. 237-23.